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A large-eddy simulation technique is described for computing Rayleigh–Taylor
instability. The method is based on high-wavenumber-preserving subgrid-scale models,
combined with high-resolution numerical methods. The technique is verified to match
linear stability theory and validated against direct numerical simulation data. The
method is used to simulate Rayleigh–Taylor instability at a grid resolution of 11523.
The growth rate is found to depend on the mixing rate. A mixing transition is observed
in the flow, during which an inertial range begins to form in the velocity spectrum and
the rate of growth of the mixing zone is temporarily reduced. By measuring growth
of the layer in units of dominant initial wavelength, criteria are established for reach-
ing the hypothetical self-similar state of the mixing layer. A relation is obtained
between the rate of growth of the mixing layer and the net mass flux through the
plane associated with the initial location of the interface. A mix-dependent Atwood
number is defined, which correlates well with the entrainment rate, suggesting that
internal mixing reduces the layer’s growth rate.

1. Introduction
Rayleigh–Taylor instability (RTI) is the baroclinic generation of vorticity at

a perturbed interface subject to acceleration in a direction opposite the mean
density gradient (Rayleigh 1883; Taylor 1950; Chandrasekhar 1955). The resulting
interpenetration and mixing of materials has far-reaching consequences in many
natural and man-made flows, ranging from supernovae to inertial confinement fusion
(ICF). In supernovae, the rate of growth of the mixing region is thought to be
a controlling factor in the rate of formation of heavy elements. In ICF, accurate
prediction of the depth of interpenetration of the fluids is crucial in designing
capsules to maintain shell integrity. Because of the widespread importance of RTI,
much attention over the past half century has been focused on predicting its late-time
growth rate.

At sufficiently late times, the extent of the mixing region has historically been
assumed to follow αAgt2 (Anuchina et al. 1978; Youngs 1984), where α is a
dimensionless coefficient, A ≡ (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number (with ρ1

and ρ2 being the densities of the light and heavy fluids, respectively), g is the
acceleration and t is time. This similarity solution results from dimensional analysis if
the following conditions are met: (I) all memory of initial conditions is lost, (II) there
are no boundary effects, and (III) viscosity and diffusivity (or surface tension) are not
important. Satisfying all three of these requirements has proved extremely difficult,
both experimentally and computationally.
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Regarding (I), there is some current debate as to whether initial conditions can ever
be completely forgotten (Cook & Dimotakis 2001; Clark 2003). Nevertheless, there
is broad consensus that initial conditions are felt at least until the mixing layer grows
large compared to the longest wavelength present in the initial perturbations (Glimm
et al. 2001; Dimonte et al. 2004). Hence, the best hope for observing self-similar
growth is to seed the perturbations at the smallest possible scales. In a numerical
simulation, the minimum perturbation wavelength is limited by the grid spacing,
∆, and the resolving power of the differencing scheme. Regarding (II), the ‘bubble
merger’ process is halted when the dominant wavelength, λ, or ‘bubble diameter’
grows close to the domain width, L. Additionally, as the number of modes in the
domain (L/λ) decreases, statistical measures of the mixing width become less reliable.
Hence, it is desirable to make L as large as possible in both experiments and
simulations. Regarding (III), effects of diffusive processes on the growth rate can only
be neglected if they occur on scales far smaller than λ, i.e. the bubble diameter must
be much larger than both the Kolmogorov and Batchelor scales. This requires that
the Reynolds number and Schmidt number both be large enough to allow significant
power-law ranges to develop in the velocity and density spectra. Finally, if the mixing
rate is determined by the large-scale entrainment rate, and not the diffusion scale
where molecular mixing actually occurs, then effects of miscibility cannot be neglected
at any Reynolds number. Indeed, Youngs (1991) has noted that experiments using
immiscible fluids (Read 1984), though conducted at high Reynolds number, may have
overestimated the value of α for miscible fluids.

Experiments enjoy a significant advantage over numerical simulations when it
comes to achieving high Reynolds number. However, it is much easier to control
initial perturbations in a simulation than it is in an experiment. Experiments
involving accelerated tanks (Read 1984; Dimonte & Schneider 2000) typically have
uncharacterized initial perturbations and experiments involving retracting plates
(Duff, Harlow & Hirt 1962; Dalziel, Linden & Youngs 1999) are known to introduce
unwanted large-scale disturbances into the flow. In order to observe the flow in
the pure ‘mode coupling’ limit, it is necessary that no significant energy be initially
present in low and moderate wavenumber. Thus, simulations appear to provide the
best hope for reaching the hypothetical self-similar state, at least until experiments
can be designed with well-characterized fine-scale initial perturbations.

The ideal numerical simulation would consist of an exponentially accurate (spectral)
solution to the full Navier–Stokes equations, where all scales of motion, including
the Kolmogorov and Batchelor scales, are fully resolved. Such is the goal of direct
numerical simulation (DNS). DNS however, is severely restricted in the range of
Reynolds numbers and Schmidt numbers of flows it can represent. Cook & Zhou
(2002) performed DNS of RTI using 535 million grid points, however, their final
Reynolds number (5500) was insufficient to support a significant inertial range in the
energy spectrum of the density field. With large-eddy simulation (LES), wherein only
the large growth-controlling scales of motion are resolved, it is possible to satisfy all
three of the listed requirements; such is the goal of this work.

The layout of this paper is as follows. In § 2, the governing equations and LES
solution technique are presented for an incompressible RTI flow. An incompressible
formulation is chosen so that the fluids on either side of the interface can be initialized
with constant density, and to eliminate sound waves as a constraint on the time step.
In § 3, various flow quantities are defined for the purpose of modelling and analysis.
In § 4, several verification and validation tests of the LES method are performed. In
§ 5, initial conditions and simulation details are described for the RTI flow under
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investigation. In § 6, various results are presented from the LES. In § 7, a relation is
derived between the rate of growth of the mixing layer and the net mass flux through
the mid-plane. Finally, in § 8, conclusions are drawn regarding the effects of mixing on
the flow and some speculations are made concerning the asymptotic state of growth.

2. Governing equations
2.1. Conservation laws

The governing equations for flows comprised of two incompressible miscible fluids in
an accelerated Cartesian frame of reference are

∂ρYm

∂t
+

∂ρYmuj

∂xj

=
∂

∂xj

(
ρD

∂Ym

∂xj

)
(m = 1, 2), (2.1)

∂ρui

∂t
+

∂ρuiuj

∂xj

= − ∂p

∂xi

+
∂τij

∂xj

+ ρgi, (2.2)

where

τij = µ

[
∂ui

∂xj

+
∂uj

∂xi

− 2
3
δij

∂uk

∂xk

]
.

Here, ρ is the mixture density, Ym is the mass fraction of species m, ui = (u, v, w) is
the mass-averaged mixture velocity, p is the pressure, D is the Fickian diffusivity, µ

is the dynamic viscosity and gi = (0, 0, −g) is the acceleration.

2.2. Large-eddy equations

In DNS, (2.1) and (2.2) are solved with µ and D sufficiently large (or the domain
sufficiently small) to resolve all flow gradients on the computational grid. In LES,
the small scales of motion are (conceptually) removed from the problem by applying
a low-pass filter to the governing equations. The resulting large-eddy equations are
then solved for the large-scale features of the flow. The effects of subgrid-scale (SGS)
motions on the resolved scales are modelled. A homogeneous LES filter is defined by
the convolution

f (x) ≡
∫

D
G(|x − ξ |; ∆)f (ξ ) dξ , (2.3)

where D is the flow domain. The filter kernel is normalized,∫ ∞

−∞
G(ξ ; ∆) dξ = 1,

and has a characteristic width, ∆, directly related to the LES grid spacing. For constant
∆ (uniform grid spacing), the filter commutes with derivatives and application of the
filter to (2.1) and (2.2) results in

∂ρ̄Ỹ m

∂t
+

∂ρ̄Ỹ mũj

∂xj

=
∂

∂xj

(
ρ̄D

∂Ỹ m

∂xj

+ ηmj

)
, (2.4)

∂ρ̄ũi

∂t
+

∂ρ̄ũi ũj

∂xj

= − ∂p̄

∂xi

+
∂

∂xj

(τ̄ ij + σij ) + ρ̄gi, (2.5)

where

ηmj = ρ(Ỹ mũj − Ỹmuj ), (2.6)

σij = ρ(ũi ũj − ũiuj ), (2.7)
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with the tilde denoting a mass-weighted filter, e.g. ũi = ρui/ρ. Additional elements
arising from filtering the viscous and diffusive terms have been neglected. We model
the SGS fluxes as

ηmj = ρ̄DT

∂Ỹ m

∂xj

, (2.8)

σij = µT

[
∂ũi

∂xj

+
∂ũj

∂xi

− 2
3
δij

∂ũk

∂xk

]
, (2.9)

where DT and µT are grid-dependent diffusivity and viscosity, respectively. Replacing
ūi with ũi in the expression for τ̄ ij , the large-eddy equations become

∂ρ̄Ỹ m

∂t
+

∂ρ̄Ỹ mũj

∂xj

=
∂

∂xj

[
ρ̄(D + DT )

∂Ỹ m

∂xj

]
, (2.10)

∂ρ̄ũi

∂t
+

∂ρ̄ũi ũj

∂xj

= − ∂p̄

∂xi

+
∂

∂xj

[
(µ + µT )

(
∂ũi

∂xj

+
∂ũj

∂xi

− 2
3
δij

∂ũk

∂xk

)]
+ ρ̄gi . (2.11)

These LES equations are identical to the DNS equations, except for the grid-dependent
viscosity and diffusivity. Models for DT and µT are discussed in § 2.3. The equations
are solved using a tenth-order compact (Padé) scheme for the spatial derivatives and
a third-order pressure-projection scheme for time advancement. An explicit filter is
applied to ρ and ρui after each complete time step to reduce aliasing errors. Details
of the numerical algorithm and filtering are given in the Appendices.

2.3. Subgrid-scale modelling

For ease of notation, the bars and tildes, denoting LES variables, will be dropped for
the remainder of the paper. In constructing expressions for µT and DT , we do not
presume to represent the true physics of subgrid-scale motions. The goal here is simply
to damp Gibbs oscillations (a result of the near sharp wavenumber cutoff of the LES
filter) without corrupting the spectral energy flux at low and moderate wavenumbers.
The efficacy of this LES approach relies on the premise that energy production at low
and moderate wavenumbers, in conjunction with adequate representation of inertial-
range dynamics, is sufficient to yield the correct growth rate and net mixing rate for
this flow. For positive DT and µT , (2.8) and (2.9) are purely dissipative. The optimal
LES result with such modelling is a flow in which the inertial range of the energy
spectrum extends up to the Nyquist wavenumber of the grid. In practice, a numerical
dissipation range must be admitted at high wavenumbers, in order to remove energy
that would otherwise pile up near the grid scale. The dissipation range can be made
narrow (hence allowing for a broader inertial range) by imparting a high-wavenumber
bias to the artificial viscosity (a hyperviscosity). Such high-wavenumber damping has
been successfully employed in acoustics computations by Barone & Lele (2002) who
constructed a dissipation operator based on the sixth derivative of the velocity field
and applied the operator along grid lines. Here, we take a similar but less direct
approach, wherein µT (rather than σij ) is based on the large derivative. This is done
in order to retain the Navier–Stokes form of the momentum equation.

The particular SGS viscosity employed in our simulations is

µT = Cµρ∆r+1S , (2.12)

where

S ≡ (SijSij )
1/2, Sij ≡ 1

2

(
∂rui

∂xr
j

+
∂ruj

∂xr
i

)
,
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and the double overbar denotes a Gaussian filter (see Appendix B) that smooths

out oscillations in µT . The length scale, ∆ =
√

∆x2 + ∆y2 + ∆z2, is the effective grid
spacing. The r parameter is set to 8, which provides a k8 weighting of the viscosity
in Fourier space (Cook & Cabot 2004). The eighth derivative is computed with the
following compact scheme

29uVIII
j + 14

(
uVIII

j+1 + uVIII
j−1

)
+ (3/2)

(
uVIII

j+2 + uVIII
j−2

)
= [4200uj − 3360(uj+1 + uj−1) + 1680(uj+2 + uj−2)

− 480(uj+3 + uj−3) + 60(uj+4 + uj−4)]/∆
8
i ,

where ∆i is the grid spacing in the i-direction and uVIII
j approximates the eighth

derivative at the j th grid point (in the i-direction). The constant of proportionality
is set to Cµ = 0.01, a value judged optimal from a variety of tests on many flows
including the Taylor–Green vortex. The large (eighth) derivative serves as a ringing
detector; i.e. µT is only active where velocity gradients must be limited to remain
resolved on the grid.

The SGS diffusivity, DT , is designed to reduce the overshoots and undershoots in
the filtered mass fractions. It was originally modelled in a similar fashion to µT (based
on ∂8Ym/∂x8

j ); however, it was discovered that a cheaper and more effective method is
to use the overshoots and undershoots directly. Hence, the SGS diffusivity employed
in our simulations is

DT = CD

∆2

∆tCFL

η, (2.13)

where

η =


−Y2 if Y2 < 0,

0 if 0 � Y2 � 1,

Y2 − 1 if Y2 > 1,

the time scale, ∆tCFL, is the CFL condition

∆tCFL = min

[(
|u|
∆x

+
|v|
∆y

+
|w|
∆z

)−1
]
, (2.14)

and the triple overbar denotes a smoothing filter that fills in gaps between the over
and undershoots (see Appendix B). By employing ∆tCFL as the diffusion time scale,
the oscillations can be damped in the most rapid manner possible without violating
stability limits on diffusion. The diffusion constant is set to CD = 1000, which strongly
inhibits the mass fractions from straying out of bounds. With this prescription for
DT , the overshoots and undershoots, normally about 10% for Gibbs oscillations, are
reduced to less than 1%.

3. Definitions
3.1. Dominant wavelength

With homogeneity (periodic boundaries) in x and y, ensemble averages (denoted by
angle brackets) are equivalent to horizontal integrals, i.e. for any variable φ(x, y, z, t)
in an L3 box,

〈φ〉(z, t) =
1

L2

∫ L

0

∫ L

0

φ(x, y, z, t) dx dy. (3.1)
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The number of independent realizations in the ensemble is determined by the width
of the autocorrelation function for φ. The correlation width is closely related to the
dominant wavelength

λφ(t) ≡

∫ kmax

0

Eφ(k, 0, t)/k dk∫ kmax

0

Eφ(k, 0, t) dk

, (3.2)

where k =
√

k2
x + k2

y is the magnitude of horizontal wavevectors associated with
an annulus in Fourier space and Eφ is the two-dimensional energy spectrum of
φ′ = φ − 〈φ〉, computed by taking the Fourier transform of φ′, multiplying by its
complex conjugate, and summing over the annulus associated with each wavenumber
bin. The box width, L, is normalized to 2π, such that k = 1 corresponds to the
fundamental mode. In an LES, kmax is taken as the Nyquist wavenumber; however, in
an experiment or DNS, kmax should be set to the wavenumber at which diffusion or
surface tension reduces the growth rate to zero, according to linear stability theory. If
λφ � L, then accurate averages can be computed for φ and the periodic boundaries
will not restrict the growth of λφ .

3.2. Mixing height

The amount of mixed fluid is quantified by considering a passive, equilibrium chemical
reaction between the light and heavy fluids. An example of such a reaction is the
HCl + NaOH → H2O + NaCl reaction for the pH indicator in the experiments of
Linden, Redondo & Youngs (1994). The mole fraction of heavy fluid is

X =
ρ − ρ1

ρ2 − ρ1

, (3.3)

and the mole fraction of product is

Xp(X) =

{
X/Xst if X � Xst ,

(1 − X)/(1 − Xst ) if X > Xst ,
(3.4)

where Xst is the heavy-fluid mole fraction for a stoichiometric mixture, which is set
to the equimolar value Xst =1/2. The height of the mixing region is defined as the
product thickness that would result if the entrained fluids were perfectly mixed in x

and y, i.e.

h ≡
∫ ∞

−∞
Xp(〈X〉) dz. (3.5)

Thus, h is an entrainment length, derived from the volumes of pure fluids entering
the mixing region. Now let ζ be the z location where 〈X〉 = Xst and let the interface
be initially located at z =0. The mixing height can be divided into two lengths,
h =hb − hs , corresponding to the volumes of light and heavy fluid crossing the z = 0
plane, i.e.

−hs =

∫ min(0,ζ )

−∞
〈X〉/Xst dz +

∫ 0

min(0,ζ )

(1 − 〈X〉)/(1 − Xst ) dz, (3.6)

hb =

∫ max (0,ζ )

0

〈X〉/Xst dz +

∫ ∞

max (0,ζ )

(1 − 〈X〉)/(1 − Xst ) dz. (3.7)
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In subsequent sections, we will demonstrate the relationship between these integral
definitions and the more common ‘spike’ and ‘bubble’ threshold definitions,

〈X〉
(
z = −hn%

s

)
= n%, (3.8)

〈X〉
(
z = hn%

b

)
= 1 − n%. (3.9)

3.3. Progress variable

It is instructive to measure growth of the mixing region in units of the dominant
perturbation wavelength. The simulated flow is initially quiescent, perturbed only
in the density field; hence, the dominant initial wavelength is λo = λρ(0). A natural
progress variable is h/λo, with corresponding timescale

τ ≡
(

λo

Ag

)1/2

, (3.10)

where

A =
ρ2 − ρ1

ρ2 + ρ1

= 1
2

(3.11)

is the Atwood number used in this study.

3.4. Mixing variables

The relative amount of molecularly mixed fluid within the mixing zone is typically
characterized as the ratio of a mixing length to an entrainment length. Youngs (1994)
defines the ratio to be

Θ ≡

∫ ∞

−∞
〈X(1 − X)〉 dz∫ ∞

−∞
〈X〉〈1 − X〉 dz

, (3.12)

whereas Cook & Dimotakis (2001) use

Ξ ≡

∫ ∞

−∞
〈Xp〉 dz

h
. (3.13)

We will show that Θ and Ξ give very similar measures of the state of mixing within
the layer.

Another quantity related to mixing is the effective Atwood number, which we define
at the mid-plane by

Ae ≡ ρrms

〈ρ〉|0
, (3.14)

where 〈ρ〉|0 = 〈ρ〉(z = 0) and

ρrms = 〈ρ ′2〉1/2
∣∣
0
, ρ ′ = ρ − 〈ρ〉. (3.15)

When Ae decreases, the two fluids are diffusing together faster than pure fluids
are being brought to the mid-plane. Conversely, when Ae increases, pure fluids are
coming into contact with the mid-plane faster than they are mixing by diffusion. For
immiscible fluids, Ae ≈ A assuming 〈ρ〉|0 ≈ (ρ1 + ρ2)/2.
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Figure 1. Growth factor, ḣa/ha , where the amplitude ha is half the peak-to-valley height
of the mean density level, (ρ1 + ρ2)/2, normalized by the growth factor from linear stability
theory,

√
Agk/ψ , with A = 1/2, g =1, k =1 (fundamental mode) and ψ = 1.03 (thickness

correction) (Duff et al. 1962).

4. Verification and validation
4.1. Comparison with linear stability theory

We have verified that the LES methodology produces growth rates in agreement with
linear stability theory for single-mode Rayleigh–Taylor instability. The growth rate
factor from a 5122 point single-mode simulation was compared to the theoretical
growth rate factor from Duff et al. (1962) for an interface with small initial
thickness. In the simulation, µ and D were set to zero, but µT , DT and the filter
were all active. In figure 1, the measured/theoretical growth rate factor is plotted
versus amplitude/wavelength. For amplitude to wavelength ratios of less than 3 %,
simulation and theory agree to within 1 %. At larger ratios, nonlinear effects become
important and agreement drops off.

4.2. Comparison with DNS

In addition to comparing with linear stability theory, we confirmed that the LES
converges to DNS at low Schmidt and Reynolds numbers. In testing this convergence,
a 2563 DNS was conducted of Rayleigh–Taylor instability for a case very similar to
that described in Cook & Zhou (2002), i.e. A= 1/2 with isotropic perturbations
peaked at mode 16. An accompanying LES was performed with a set-up identical
to the DNS, but with the filter and SGS models active. The DNS ran stably until a
time of t = 7.33τ before crashing owing to inadequate small-scale resolution. Volume
renderings of the lower fluid at t = 7.25τ are displayed in figure 2 for both simulations.
The flows appear identical, based on visual inspection, suggesting that convergence is
achieved. The bubble and spike heights for the DNS and LES are plotted in figure 3.
The filter and SGS models preserve the DNS growth rates while enabling the LES to
proceed to Reynolds numbers well beyond the reach of DNS.
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(a) (b)

Figure 2. Volumes of ρ � 2.5 fluid from (a) DNS and (b) LES.
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Figure 3. Mixing heights from validation DNS (solid) and LES (dashed). Top and bottom
curves are h1 %

b and −h1 %
s , respectively. Middle curves are hb and −hs .

4.3. Wall effects

The influence of the top and bottom walls on the growth of the mixing layer was
assessed by performing two identical simulations, with the domain height doubled in
the second set-up. Figure 4 displays the heights of the bubbles and spikes in each case.
The results of this test suggest that the walls do not affect the growth of the mixing
region until the tips of the bubbles and spikes approach the ends of the domain.

5. Simulation details
The computational domain for the production LES is an L3 cube composed of

11523 uniformly spaced grid points. Acceleration is set to g = 1 and the densities
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Figure 4. Mixing heights for simulations with 2563 (solid) and 2562×512 (dashed) grid points.
The top and bottom of the bounding box correspond to the locations of the walls in the 2563

simulation. Top and bottom curves are h1 %
b and −h1 %

s , respectively. Middle curves are hb and
−hs .

of the light and heavy fluids are set to ρ1 = 1 and ρ2 = 3, respectively. Boundary
conditions are periodic in x and y, with no-slip walls imposed in z at the top and
bottom of the box. The initial fluid interface is prescribed as an error function,

ρ(x, 0) = 1
2
[ρ1 + ρ2 + (ρ2 − ρ1)erf(z/ε + ξ (x, y))], ε = 5∆z/2, (5.1)

where ∆z is the grid spacing in z and ξ (x, y) is a field of isotropic perturbations,
which are fit to the Gaussian spectrum shown in figure 5. The root-mean-square of
the perturbations is [

2

∫ kmax

0

Eξ (k) dk

]1/2

= 0.1.

Setting L =2π, then kmax = 576 corresponds to the Nyquist wavenumber. The
perturbation spectrum peaks at k = 144 with standard deviation σk = 24. The initial
perturbations on the z =0 plane are shown in figure 6. To allow the fine-scale
perturbations to grow, free from viscous and diffusive damping, µ and D are both set
to zero. This initialization is chosen to place the flow as far as possible into the ‘mode-
coupling’ limit, while still providing adequate resolution of the initial perturbations.

The simulation proceeds until the dominant (most energetic) flow structures
approach L. We report results up to t/τ =33 (h/λ0 ≈ 30), where we have confidence
that the results are independent of both vertical and horizontal flow boundaries. At
this time, the horizontal autocorrelation of vertical velocity at half-domain separation
is still below 10 %, and there are about five large-scale structures in the box.
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Figure 5. Spectrum of initial interfacial perturbations.

6. Results
6.1. LES variables

The density and vorticity fields develop large dynamical ranges, as indicated in
figure 7, which also shows the roles µT and DT play in the LES. The SGS diffusivity
is most active at the bubble and spike fronts since that is where density gradients are
largest. The SGS viscosity, on the other hand, is most active inside the layer since
that is where velocity gradients are steepest.

6.2. Growth stages

The evolution of the instability is depicted in figure 8, which shows side-on views of
the mixing layer at four different times during the course of the simulation. At early
times, the perturbations grow in a fairly independent fashion (figure 8a). Then the
modes begin to couple to one another and secondary Kelvin–Helmholtz instabilities
appear (figure 8b). At this point, the range of scales in the mixing layer rapidly
increases, generating more mixed fluid within the layer (figure 8c). We regard this
phenomenon as qualitative evidence of the mixing transition (Dimotakis 2000). Post
transition, the large scales in the flow (bubble/spike diameters) continue to increase
until the mixing region becomes fully turbulent (figure 8d).

The effect of mixing on the RTI growth rate is illustrated in figure 9, where Ae

is seen to correlate with the bubble/spike growth rate. The curves for ḣs and ḣb are
computed by taking time derivatives of (3.6) and (3.7). The near equivalence of ḣs and
ḣb demonstrates how the integral definition reduces the asymmetry compared to the
1 % threshold definition. Four stages of growth, corresponding to the images shown
in figure 8, are labelled in the figure. We identify these stages as: (I) independent
modal growth, (II) weak turbulence, (III) mixing transition, and (IV) strong
turbulence. In stage I, the perturbations increase in magnitude, but remain essentially
independent from one another. In stage II the modes begin to couple as secondary
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Figure 6. Initial perturbations on z = 0 plane.

Kelvin–Helmholtz instabilities develop. In stage III, the mixing rate overtakes the
entrainment rate (downward slope of Ae/A), which temporarily reduces the growth
rate. Finally, in stage IV, mixing and entrainment rates come into balance and the
layer experiences a boost in growth.

6.3. Layer height

Figure 10 displays the spike and bubble heights as a function of t/τ . It is demonstated
that h1%

s and h1%
b can both be obtained by multiplying the integral height, h, by

constant factors; these factors, however, probably vary with Atwood number. The
total mixing height, h, and the dominant horizontal density wavelength, λ, are plotted
in figure 11. The dominant horizontal scales are seen to grow at approximately the
same rate as the mixing height. Lines are drawn at the boundaries of the stages
defined in figure 9 to assist in mapping the time variable, t/τ , onto the progress
variable, h/λo.

6.4. Mixing transition

Figure 12 displays the mixing variables (3.12, 3.13) as functions of the progress
variable, h/λo. Both Θ and Ξ provide essentially the same measure of the amount of
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(a) (b)

(c) (d)

Figure 7. Side-on views of mixing region at t/τ = 33. (a) Density (ρ) (b) SGS diffusivity
(DT ), (c) vorticity magnitude (‖∇ × u‖), and (d) SGS viscosity (µT ).

molecularly mixed fluid within the layer. The mixing transition corresponds to the rise
in Θ and Ξ for the range 6 <h/λo < 15. Further quantitative evidence for the mixing
transition is observed in the evolution of the probability density function (p.d.f.) of the
heavy-fluid mole fraction. Figure 13 displays the p.d.f. of X at two instances before
and two instances after the transition. A significant increase in mixed fluid occurs
during stage III, after which there is little change in the p.d.f. Similar behaviour
has been observed in turbulent jets for Reynolds numbers spanning 3000 to 24 000
(Miller & Dimotakis 1991), and in other flows described by Dimotakis (2000). The
increase in mixed fluid during stage III corresponds to formation of an inertial
range in the two-dimensional spectrum of the vertical velocity component, w. The
w spectrum on the z = 0 plane is plotted in figure 14 at times corresponding to
the ends of the first three growth phases. In stage I, the perturbation spectrum
increases in magnitude, but the peak remains close to λo. In stage II the peak of the
spectrum begins migrating to lower wavenumbers, and in stage III an inertial range
forms. Dimotakis (2000) has noted that formation of an inertial range tends to occur
simultaneously with an increase in mixed fluid for a wide variety of flows. We observe
similar behaviour for Rayleigh–Taylor instability.

6.5. Spectra

In figure 15, late-time velocity and density spectra are plotted. The ρ and w spectra
develop fairly broad power-law ranges during stage IV. The difference in magnitude
between Eρ and Ew is a consequence of the boundedness of ρ; i.e. ρ1 � ρ � ρ2, whereas
w is unbounded (Dimotakis & Miller 1990). The energy spectra of u and v appear to
lag the w spectrum in development, falling below the w spectrum at low wavenumbers
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(a)

(b)

(c)

(d)

Figure 8. Side-on views of density in the mixing region for stages I–IV (a–d). Times
displayed are t/τ = 3, 11, 21 and 33. Heavy fluid is black.

but approaching the w spectrum at high wavenumbers. The secondary flow develops
more quickly at high wavenumbers as a result of more rapid eddy turnovers. As time
advances, the u and v spectra conform to the w spectrum at progressively larger scales.
This same wavenumber-dependent lag between the horizontal and vertical velocity
spectra has been observed experimentally by Ramaprabhu & Andrews (2004).
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Figure 9. Growth rate of bubbles (ḣb, solid line) and spikes (ḣs , dashed line), along with
effective Atwood number ratio (Ae/A, dotted line).
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Figure 10. Bubble (upper) and spike (lower) heights vs. t/τ . Solid lines are hb and −hs .
Dashed lines are h1%

b and −h1%
s . Dotted lines (nearly coincident with dashed lines) are 1.112h

and −1.324h, where h is defined in (3.5).
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Figure 11. Time-evolution of mixing height, h, and dominant horizontal wavelength, λ.
Fiducial lines delineate approximate growth-stage boundaries.

0 5 10 15 20 25 30
0.6

0.7

0.8

0.9

M
ix

ed
/e

nt
ra

in
ed

 f
lu

id

Ξ

Θ

h/λo

Figure 12. Ratio of mixed to entrained fluid for the mixing region. Θ , Ξ =1 corresponds to
completely mixed fluid (no horizontal variation), whereas Θ , Ξ = 0 corresponds to complete
segregation (immiscible case).
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Figure 13. Probability density functions of heavy-fluid mole fraction on z = 0 plane
(. . . , t = 7τ ; . –– ., t = 11τ ; – – –, t =21τ ; –––––, t = 33τ ).
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Figure 14. Evolution of the vertical velocity spectrum computed in the z =0 plane (key as
for figure 13). A fiducial corresponding to k−5/3 is drawn for reference.

6.6. Energy budget

The potential energy released into the flow is

PE(t) =

∫
L3

[ρ(x, 0) − ρ(x, t)]gz d3x, (6.1)
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Figure 15. Two-dimensional spectra of density and velocity components in the z = 0 plane at
t = 33τ (h = 30λo). The solid line is ρ, the dashed line is w and the dotted lines are u and v. A
fiducial corresponding to k−5/3 is drawn for reference.

and the kinetic energy present in the flow is KE = KE xy + KE z, where

KE xy(t) =
1

2

∫
L3

ρ[u2 + v2] d3x (6.2)

and

KE z(t) =
1

2

∫
L3

ρw2 d3x. (6.3)

Ratios of kinetic energy to potential energy and horizontal energy to vertical energy
are plotted in figure 16 versus the progress variable h/λo. The KE/PE ratio has not
quite come into balance by t/τ = 33; however, it has reached a value of 0.50 with a
fairly shallow rise. This value is in close agreement with the experimental value of
0.51 measured by Ramaprabhu & Andrews (2004). The continued rise at late times is
probably related to lack of an established inertial range in the secondary flow (u and
v). The ratio of horizontal to vertical kinetic energy appears to reach an asymptotic
value of 0.58 (also in agreement with experiment) by h/λo = 21.

6.7. Mole-fraction profiles

Figure 17 displays mole-fraction profiles at three different times during the course of
the simulation. The profiles collapse to a universal function of z/h, indicating a degree
of self-similarity in the layer development. Deviations from this universal curve are
slight, suggesting that statistics are adequately converged. The mole-fraction profile
reaches this self-similar state at very early time and does not appear significantly
affected by the four stages of growth discussed previously. The slight asymmetry in
the profiles is a consequence of the moderate Atwood number.
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Figure 16. Ratios of total kinetic energy to released potential energy, and horizontal kinetic
energy to vertical kinetic energy.
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Figure 17. Heavy-fluid mole fraction averaged over horizontal planes
(. . . , t = 11τ ; – – –, t = 21τ ; –––––, t = 33τ ).

7. Growth-mixing relation
7.1. Growth and mass flux

An approximate relationship between the degree of internal mixing and the growth
rate of the turbulent region can be derived using mass continuity along with the
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Figure 18. Mean mole fraction at z = 0 (dashed line) and displacement of equimolar plane
(solid line) versus t/τ .

definition of the integral mixing height. Differentiating (3.5) with respect to time
results in

ḣ =
1

Xst

∫ ζ

−∞

∂〈X〉
∂t

dz − 1

1 − Xst

∫ ∞

ζ

∂〈X〉
∂t

dz, (7.1)

Using the mean continuity equation,

∂〈ρ〉
∂t

+
∂〈ρw〉

∂z
= 0, (7.2)

and 〈ρ〉 = ρ1 + (ρ2 − ρ1)〈X〉 in (7.1) leads to the exact relation

ḣ =
−1

Xst (1 − Xst )

〈ρw〉|ζ
(ρ2 − ρ1)

. (7.3)

The net mass flux through the (z = ζ )-plane, 〈ρw〉|ζ , can be approximated by the

net mass flux through the (z = 0)-plane, 〈ρw〉|0, provided ζ is sufficiently close to
0 and/or the variation in 〈ρw〉 is sufficiently small between these planes. Indeed,
figure 18 shows that ζ/λo is typically less than unity, and figure 19 indicates that the
mass flux varies little over the relevant range in z. Making this approximation, and
using Xst = 1/2, results in

ḣ ≈ −4 〈ρw〉|0
(ρ2 − ρ1)

. (7.4)

Hence, the growth rate of the mixing layer can be viewed as the net mass flux through
the (z = 0)-plane. Neglecting diffusive effects, 〈w〉 =0; therefore, growth is associated
with the correlation between density and vertical velocity at the mid-plane.
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Figure 19. Net mass flux near the centre of the mixing region
(. . . , t = 11τ ; – – –, t = 21τ ; –––––, t = 33τ ).

(a) (b)

Figure 20. (a) Density and (b) downward velocity on the (z = 0)-plane at t = 26τ .

7.2. Mass flux and mixing

The governing equation for the mid-plane mass flux, 〈ρw〉|0, is given by the mean
vertical momentum equation, but this introduces higher-order unknowns into the
system, leading to the usual closure problem. Instead, we explore some empirical
relations for the mid-plane mass flux in (7.4). We observe in figure 20 a strong
correlation between density and negative vertical velocity at large scales. The
correlation between ρ and −w,

Cr =
−〈ρw〉|0
ρrmswrms

, (7.5)
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Figure 21. Dependence of empirical coefficients on flow development.
. . . , Cr (7.5); – – –, Cw (7.8); –––––, C = 2CrCw .

is found in figure 21 to have a nearly constant value of 0.76 at late times (h/λo > 21).
The r.m.s. density can be recast in terms of the effective Atwood number Ae, defined
in (3.14), such that

ρrms

ρ2 − ρ1

=
〈ρ〉|0

ρ2 + ρ1

Ae

A
. (7.6)

Figure 18 indicates that 〈X〉|0 ≈ 1/2, therefore

〈ρ〉|0
ρ2 + ρ1

=
(

〈X〉|0 − 1
2

)
A + 1

2
≈ 1

2
. (7.7)

The validity of this approximation at larger Atwood numbers is yet to be determined.
The ratio Ae/A reaches a nearly constant value of 0.48 at late times (see figure 9). A
balance between kinetic and potential energy (in the spirit of buoyancy–drag models)
suggests the following approximation for the mid-plane vertical velocity fluctuations,

wrms = (〈w2〉|0)1/2 ≈ Cw

√
Aegh, (7.8)

where Cw is an empirical constant with a value of about 0.56 at late times (see
figure 21). Equation (7.8) is a generalization of the terminal velocity expression
for a falling sphere with diameter ∝ λ ∝ h (see figure 11). Experimental evidence
demonstrating a link between wrms and ḣ has been found by Ramaprabhu & Andrews
(2004).

An approximate relation between growth and mixing is obtained by combining
(7.4), (7.5), (7.7) and (7.8), yielding

ḣ ≈ C

(
Ae

A

)3/2

(Agh)1/2, (7.9)
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where C = 2CrCw ≈ 0.85. The solution to (7.9) is

h1/2 ≈ h1/2
c +

∫ t

tc

(
C

2

)(
Ae

A

)3/2

(Ag)1/2 dt∗, (7.10)

where hc = h(tc). If C and Ae are assumed constant for t � tc, then

h(t) ≈ hc + 2(αAghc)
1/2(t − tc) + (αAg)(t − tc)

2, (7.11)

where

α =

(
C

2

)2 (
Ae

A

)3

. (7.12)

The mixing layer thus exhibits both linear and quadratic growth rates, the prevalence
of either depending on initial conditions. Glimm et al. (2001) arrive at an equation
similar to (7.11) through a virtual shift in the starting time. Inserting C = 0.85 and
Ae = 0.48A into (7.12) yields α ≈ 0.020, or, in terms of the 1 % bubble height (see
figure 10) αb ≈ 0.022. A direct measure of α, from the slope of ḣ for t/τ > 21 in
figure 9, yields α = 0.025, corresponding to αb ≈ 0.027. These values are near the low
end of the range of measurements reported in the literature, but are consistent with
the general downward trend for simulations of increasing resolution (Dimonte et al.
2004).

7.3. Immiscible case

For immiscible fluids, ρrms attains its maximum possible value,

max(ρrms ) = (ρ2 − ρ1)[ 〈X〉|0 − (〈X〉|0)2]1/2, (7.13)

such that, Ae = A (assuming 〈X〉|0 = 1/2). The sensitivity of ḣ to Ae (7.9) suggests that
the growth rate for immiscible fluids will exceed that of miscible fluids at the same
Atwood number and acceleration (assuming that the other empirical constants do
not change substantially). This could explain why experiments with immiscible fluids
(Read 1984; Dimonte & Schneider 2000) and simulations employing front tracking
(Glimm et al. 2001) appear to exhibit faster growth rates than cases with species
diffusion (Dimonte et al. 2004).

8. Conclusions
We have developed a large-eddy simulation methodology well-suited for large-scale

simulations of Rayleigh–Taylor instability. The method converges to DNS at low
Reynolds numbers, while allowing for stable solutions at high (effective) Reynolds
numbers. We used the method to perform an LES of RTI at a grid resolution of 11523

points. The simulated flow appears to progress through four stages, including a mixing
transition. The mixing transition is evident in the evolution of the mole-fraction p.d.f.,
which indicates an increase in mixed fluid for 6 <h/λo < 15. The increase in the mixing
rate coincides with formation of an inertial range in the two-dimensional spectrum of
vertical velocity. During this stage, the growth rate of the mixing layer is somewhat
suppressed. Hence, attempts to measure α for h/λ0 < 15 are likely to yield erroneous
results.

The flow develops broad power-law ranges in both the density and vertical velocity
spectra by late time. The spectra for horizontal velocity components appear to lag
the vertical velocity spectrum in development, matching first at higher wavenumbers
where eddy turnover times are short. Well-defined peaks in the energy spectra at
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low wavenumbers and the collapse of mole-fraction averages scaled by mixing height
indicate that the flow is well resolved and the growth statistics are well converged for
the duration of the simulation.

We have derived a relationship between growth and mixing rates that approximates
the LES data. The relation is based on an observed correlation between a mix-
dependent Atwood number and the net mass flux through the (z = 0)-plane. The
relation suggests faster growth for immiscible fluids than for miscible fluids.

Finally, we emphasize that realization of self-similar growth requires λo � λ� L.
These conditions must be satisfied for growth to be independent of both initial
conditions and boundary conditions. By measuring growth of certain variables in
units of λo, we documented progress of the flow towards its asymptotic state. By
h/λo =30, many variables appear to have reached their asymptotic limit; however,
there is still no appreciable inertial range in the secondary flow spectra (u and v) and
the kinetic to potential energy ratio is still gradually increasing. Larger simulations,
reaching higher values of h/λo, are needed to investigate whether the growth rate ever
becomes independent of Reynolds number.

We express thanks to Professor P. E. Dimotakis for sharing his valuable insights into
this flow, including the effects of mixing on the growth rate. This work was performed
under the auspices of the US Department of Energy by the University of California
Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

Appendix A. Numerics
A.1. Combination of species transport equations

The mass fractions satisfy

Y1(x, t) + Y2(x, t) = 1 (A 1)

and with ρ1 and ρ2 denoting the constant densities of the light and heavy fluids,
respectively, the specific volume satisfies

1

ρ(x, t)
=

Y1(x, t)

ρ1

+
Y2(x, t)

ρ2

. (A 2)

Equations (2.1), (A 1) and (A 2) can be used to derive the following divergence relation
for miscible fluids (Joseph 1990)

∂uj

∂xj

= − ∂

∂xj

(
D

ρ

∂ρ

∂xj

)
. (A 3)

Hence, for incompressible mixing of unequal-density fluids, a convenient equation for
ρ is

∂ρ

∂t
+ uj

∂ρ

∂xj

= ρ
∂

∂xj

(
D

ρ

∂ρ

∂xj

)
, (A 4)

which replaces (2.10) in the governing set of equations and is solved in the LES
manner by replacing D with DT .
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A.2. Spatial differencing

Spatial derivatives are computed in the code with the following tenth-order compact
scheme

βf ′
j−2 + αf ′

j−1 + f ′
j + αf ′

j+1 + βf ′
j+2

= c
fj+3 − fj−3

6∆i

+ b
fj+2 − fj−2

4∆i

+ a
fj+1 − fj−1

2∆i

, (A 5)

α = 1
2
, β = 1

20
, a = 17

12
, b = 101

150
, c = 1

100
,

where j is a grid index along a line with N points in the i direction, and ∆i is
the grid spacing in that direction. Near the boundaries, the stencil is telescoped in a
conservative manner, such that only the boundary nodes contribute to the boundary
fluxes (Lele 1992); i.e. at j = 4 and j = N − 3

α =
4.63271875

9.38146875
, β =

0.451390625

9.38146875
,

a = 2
6.66984375

9.38146875
, b = 4

1.53

9.38146875
, c = 6

0.015

9.38146875
;

at j =3 and j = N − 2

α =
4.743

10.67175
, β =

0.2964375

10.67175
,

a = 2
7.905

10.67175
, b = 4

1.23515625

10.67175
, c = 0;

at j =2 and j = N − 1

α = 1
4
, β = 0, a = 3

2
, b = 0, c = 0;

and at the boundary nodes

f ′
1 + 2 f ′

2 =

(
−5

2
f1 + 2 f2 +

1

2
f3

)/
∆i,

f ′
N + 2 f ′

N−1 =

(
5

2
fN − 2 fN−1 − 1

2
fN−2

)/
∆i .

A.3. Temporal integration

The solution is marched forward in time via the following third-order, variable-time-
step predictor–corrector method. For equations of the form

φ̇ = F (φ), (A 6)

the predictor step is

φ∗ = φn + ∆tnew [(1 + R)F (φn) − RF (φn−1)] (A 7)

and the corrector step is

φn+1 =φ∗ + ∆tnew [AF (φ∗) + (B − R − 1)F (φn) + (C + R)F (φn−1)], (A 8)



358 A. W. Cook, W. Cabot and P. L. Miller

where

R = ∆tnew/(2∆told ),

A = (2∆tnew + 3∆told )/[6(∆tnew + ∆told )],

B = (∆tnew + 3∆told )/(6∆told ),

C = −∆t2
new/[6∆told (∆tnew + ∆told )],

with ∆told denoting the time increment between the n − 1 and n time steps, and ∆tnew
being the time increment between the n and n + 1 times.

The density equation (A 4) is integrated by straightforward application of the
predictor–corrector scheme. However, it must be advanced in conjunction with the
momentum equation, which requires each step to be further broken down according
to the following pressure-projection algorithm. The pressure-projection scheme for
the momentum equation is derived by integrating (2.11) from t to t + ∆t , i.e.

(ρui)
n+1 = (ρui)

n +

∫ t+∆t

t

Λi dt + ∆t

(
ρagi − ∂pa

∂xi

)
, (A 9)

where (µ is replaced by µT in the expression for τij )

Λi ≡ ∂

∂xj

(τij − ρuiuj ),

pa ≡ 1

∆t

∫ t+∆t

t

p dt,

ρa ≡ 1

∆t

∫ t+∆t

t

ρ dt ≈ 1
2
(ρn+1 + ρn).

Equation (A 9) is now split into two parts. The first part accounts for advection and
diffusion, i.e.

Φi = (ρui)
n +

∫ t+∆t

t

Λi dt, (A 10)

while the second part accounts for pressure and acceleration, i.e.

(ρui)
n+1 =Φi + ∆t

(
ρagi − ∂pa

∂xi

)
. (A 11)

The integral in (A 10) is approximated by the predictor formula∫ t+∆t

t

Λi dt ≈ ∆tnew

[
(1 + R)Λn

i − RΛn−1
i

]
.

At this point, pa is needed in order to advance (A 11). Taking the divergence of (A 11)
results in the Poisson equation

∂2pa

∂x2
i

=
1

∆t

[
∂

∂xi

Φi − ∂

∂xi

(ρui)
n+1

]
+

∂

∂xi

(ρagi). (A 12)

Since (ρui)
n+1 is unknown at this point, an approximation is used, whereby

∂(ρui)
n+1/∂xi is expanded and combined with (A 3) to obtain

∂

∂xi

(ρui)
n+1 = un+1

i

∂ρn+1

∂xi

− ρn+1 ∂

∂xi

(
DT

ρn+1

∂ρn+1

∂xi

)
.
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The right-hand side is evaluated by extrapolating un+1
i from previous timesteps, i.e.

un+1
i = un

i +
(
un

i − un−1
i

)
(∆tnew/∆told ) + O(∆t2).

In this first step, ρ∗ (the predicted value of ρ at n + 1) is used in place of ρn+1.
With these substitutions, (A 12) is solved for pa (see Appendix A.4), which is then
substituted into (A 11) to compute (ρui)

∗.
In the corrector step, ρn+1 is first obtained from (A 8). With predicted values

(asterisks) now available at the n + 1 time, the trapezoidal rule can be used for the
integral in (A 10), i.e. ∫ t+∆t

t

Λi dt = 1
2
∆t

[
Λ∗

i + Λn
i

]
+ O(∆t3).

In this second step, (A 12) is solved using (ρui)
∗ in place of (ρui)

n+1. No approximation
is necessary for ρn+1 since this is now known. Finally, (A 11) is used to compute
(ρui)

n+1, from which un+1
i is obtained.

A.4. Poisson solver

With periodic boundary conditions in x and y, the Poisson equation can be Fourier
transformed to obtain

Fxy

{
∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2
= Ω(x, y, z)

}
⇒ −k2

x
ˆ̂p − k2

y
ˆ̂p + ˆ̂p

′′
=

ˆ̂
Ω(kx, ky, z),

where ˆ̂p
′′
= ∂2 ˆ̂p/∂z2. Thus (j is the z-index of the grid)

ˆ̂p
′′
j =

ˆ̂
Ωj + k2 ˆ̂pj with k2 = k2

x + k2
y. (A 13)

An eighth-order, compact approximation for ˆ̂p
′′
j can be written as (Collatz 1966; Lele

1992)

β ˆ̂p
′′
j−2 + α ˆ̂p

′′
j−1 + ˆ̂p

′′
j + α ˆ̂p

′′
j+1 + β ˆ̂p

′′
j+2 = b

ˆ̂pj+2 − 2 ˆ̂pj + ˆ̂pj−2

4∆z2
+ a

ˆ̂pj+1 − 2 ˆ̂pj + ˆ̂pj−1

∆z2
,

(A 14)

where α = 344/1179, β =23/2358, a = 320/393 and b = 310/393. Inserting (A 13) into

(A 14), and collecting the coefficients of ˆ̂pj yields the linear system[
βk2 − b

4∆z2

]
ˆ̂pj−2 +

[
αk2 − a

∆z2

]
ˆ̂pj−1 +

[
k2 +

b

2∆z2
+

2a

∆z2

]
ˆ̂pj

+

[
αk2 − a

∆z2

]
ˆ̂pj+1 +

[
βk2 − b

4∆z2

]
ˆ̂pj+2

= −
[
β

ˆ̂
Ωj−2 + α

ˆ̂
Ωj−1 +

ˆ̂
Ωj + α

ˆ̂
Ωj+1 + β

ˆ̂
Ωj+2

]
. (A 15)

At points neighbouring boundaries (j = 2 and j = N − 1) a fourth-order, compact
stencil is used, in which α =1/10, β = 0, a =6/5 and b = 0. Neumann boundary
conditions are implemented at j = 1 and j = N via the second-order approximations:

3

2∆z
ˆ̂p1 − 2

∆z
ˆ̂p2 +

1

2∆z
ˆ̂p3 = − ˆ̂p

′
1, (A 16)

− 1

2∆z
ˆ̂pN−2 +

2

∆z
ˆ̂pN−1 − 3

2∆z
ˆ̂pN = − ˆ̂p

′
N, (A 17)
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where ˆ̂p
′
1 and ˆ̂p

′
N are the x − y transforms of the z-derivatives at the walls. The

simplest boundary condition for p is the inviscid hydrostatic gradient, p′ = ρgz.
The pentadiagonal matrix associated with (A 15)–(A 17) is well-conditioned except

for k = 0, in which case it is singular. This situation arises because, with Neumann
conditions at both ends of the domain, the solution for the pressure is non-unique, i.e.
the pressure is only defined within a constant. The constant is specified by replacing

any one of the k = 0 equations in (A 15) by ˆ̂pj (k = 0) = constant. This fixes the mean
pressure on the chosen z-plane, which in turn, sets the mean pressure for the entire
domain. This condition should be applied near the centre of the domain, e.g. at
j = N/2, rather than at the boundaries, because loss of (A 16) or (A 17) at k = 0 can
lead to drift in the mean wall-normal derivative at that boundary. Note that the value
of the constant is irrelevant since the governing equations depend only on ∇p.

Appendix B. Filtering
In the simulations, the LES filter is applied explicitly to ρ and ρui after each

complete time step; this is done in order to reduce aliasing errors. The following
eighth-order compact filter is chosen for its spectral-like properties in preserving low
and moderate wavenumbers (Lele 1992),

βf̄ j−2 + αf̄ j−1 + f̄ j + αf̄ j+1 + βf̄ j+2 = afj + 1
2
b(fj−1 + fj+1)

+ 1
2
c(fj−2 + fj+2) + 1

2
d(fj−3 + fj+3) + 1

2
e(fj−4 + fj+4), (B 1)

where j is a grid index and

α = 0.61, β = 0.195, a =0.953515625, b = 1.294375, (B 2)

c = 0.3528125, d = 0.010625, e = − 0.001328125. (B 3)

The filter is applied sequentially in each direction. The transfer function associated
with this filter is depicted in figure 22. Also displayed is the implicit filter associated
with the tenth-order compact differencing scheme, used to compute spatial derivatives.
Comparing the transfer functions of the implicit and explicit filters, it is clear that
the wavenumbers remaining after application of the explicit filter are resolved well
by the differencing scheme. Both of these filters are non-monotonic in physical space;
hence, they produce Gibbs oscillations whenever the Fourier series representation of
the flow contains terms above the filter cut-off. Gibbs oscillations are not errors;
they are simply a consequence of convolving a high-resolution (low-wavenumber-
preserving) filter kernel with a broadbanded function. Nevertheless, for practical
reasons, it is desirable to remove these oscillations from the numerical solution in
order to ensure that variables remain within their original bounds, e.g. 0 � Ym � 1;
this is accomplished with the subgrid-scale models discussed in § 2.3.

Rapid oscillations in the subgrid-scale viscosity coefficient µT are smoothed with
the Gaussian filter

f j =
3565

10368
fj +

3091

12960
(fj−1 + fj+1) +

1997

25920
(fj−2 + fj+2)

+
149

12960
(fj−3 + fj+3) +

107

103680
(fj−4 + fj+4), (B 4)
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Figure 22. Transfer functions for implicit and explicit filters. –––––, implicit filter of tenth-order
compact finite-difference scheme; – – –, eighth-order LES filter explicitly applied to ρ and ρui ,
following each time step.

denoted by the double overbar. The filter employed in the subgrid-scale diffusion
coefficient DT , denoted by a triple overbar, is

f j = 0.18733 fj + 0.15365 (fj−1 + fj+1) + 0.12338 (fj−2 + fj+2)

+ 0.096354 (fj−3 + fj+3) + 0.032951 (fj−4 + fj+4), (B 5)

which helps to fill in gaps between the over and undershoots.
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